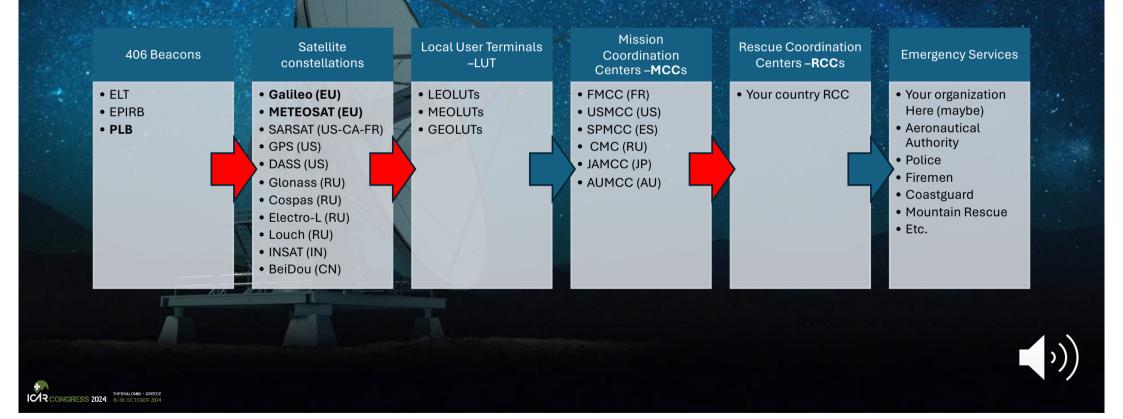
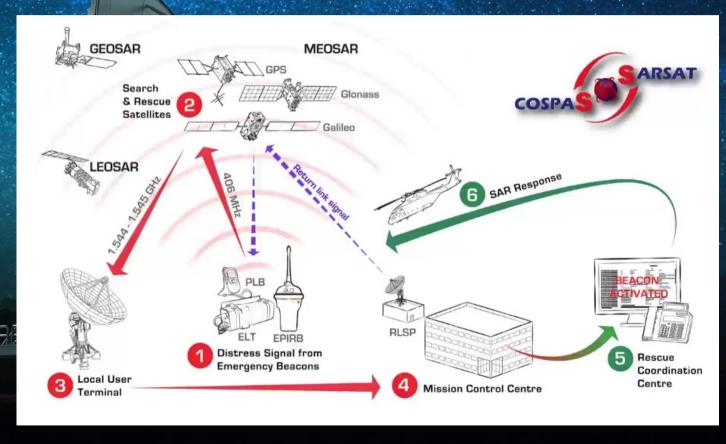
THESSALONIKI - GREECE THESSALONIKI - GREECE 15-20 OCTOBER 2024

GALILEO, CHALLENGES AND FUTURE IN PLBs



HUMBERTO HINESTROSA RESCUE INTERNATIONAL THE NETHERLANDS


)

SARSAT-COSPAS CURRENT STATE

SARSAT-COSPAS CURRENT STATE

RESCUE

0

))

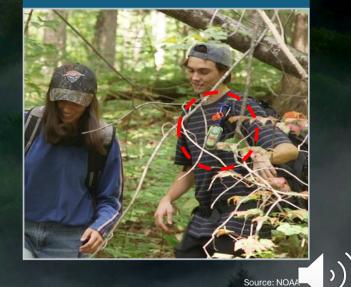
THESSALOWIKI - GREECE THESSALOWIKI - GREECE 15-20 OCTO3ER 2024

BEACON TYPES

(Emergency Locator Transmitter)

Source: Rescue International

EPIRB


(Emergency Position Indicating Radio Beacon)

Source: NOAA

PLB

(Personal Locator Beacon)

Source: NOAA

+ 2024

BEACON TYPES

Not to be confused with satellite tracking and messaging devices such as:

SPOT (Globalstar) InReach (Iridium) Bullit iPhone Etc...

((<

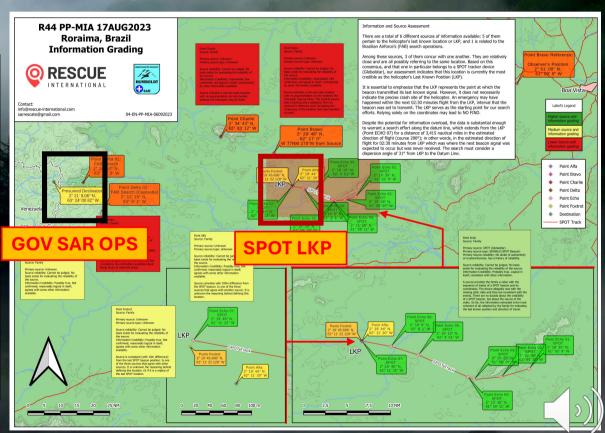
had all a	406 Beacons	Commercial Messengers
Legal	ICAO/IMODoc.9731 IAMSAR	Depends on local laws and local SAR
Functions	Distress signal and return link only	SOS function, messenger, tracking
SOS transmission (1)	Continuous until switched off or until battery dead	Until message burst ends, in SOS goes tracking
SOS transmission (2)	RF continuous transmission and/or GNSS	Needs GNSS position first, then transmits that position
Homing frequency	Yes, AM121.5MHz (analog)	No
Battery	Average 7yrs.	Needs to be charged/Batt is used while performing other functions
Service	Free and unlimited	Paid and limited to subscriptions
Message	Received by RCC	Received by operator and family/friend

THESSALONIKI - OPEECE ICR CONGRESS 2024 15-20 OCTO3ER 2024

Beacons may be subject to legal obligations in 193 countries: A State must have the domestic legal framework in place to implement a national SAR system to meet its international SAR commitments (Doc 9731-1 6.4.2)

ICAO's Annex 12 and the International Convention on Maritime Search and Rescue requires availability and response times to beacon distress signals

- Doc 9731-1, 6.5.2: All SAR incident aspects must be sensitive to timeliness, i.e. alerting, planning transit, location and rescue. Information derived from survival data and incidents involving fatalities indicates that two (2) hours is generally the average critical time within which persons in distress must be rescued in order to survive. Initial action should begin within FIVE MINUTES of initial notification of a distress incident.
- Doc 9731-1, 6.5.6: Transit time must be minimized. SRUs should get under way and arrive at the distress location, or in the search area if the actual location is not known, WITHOUT DELAY.

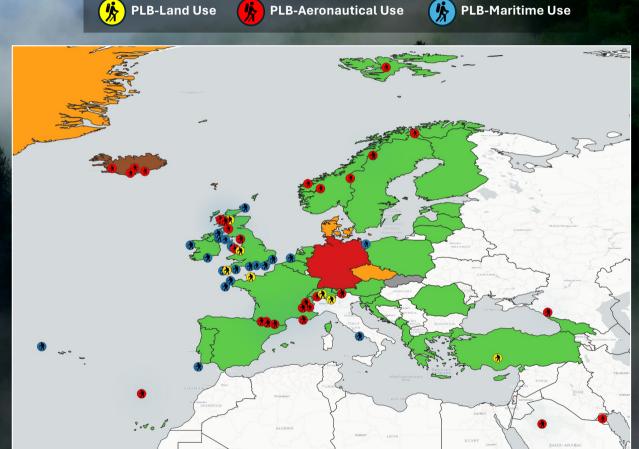

Brazil 2023 – Helicopter Missing

Authorities **dismissed tracking signal** coming from a commercial satellite messenger **SPOT**

Authorities locked in an area ~75NM far from LKP

Aircraft was never found

Unfortunately, this is not the only case where commercial beacons are disregarded


RESCUE

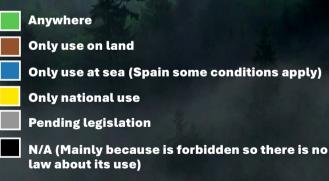
Legality of PLBs in CEPT* States

Country Colors:

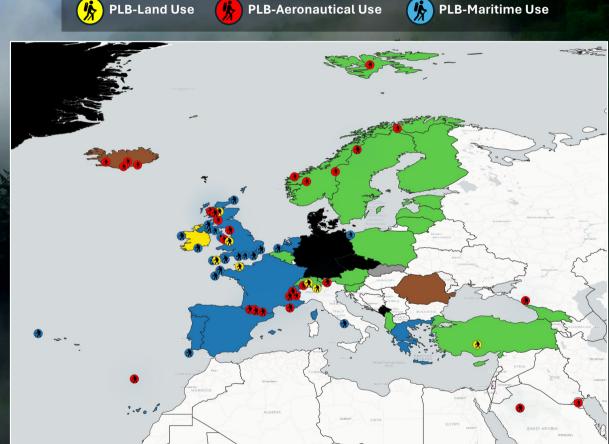
Yes all is good! Only possession and NOT usage Yes/No some conditions apply Pending legislation Nope

*European Conference of Postal and Telecommunications Administrations

Source: European Conference of Postal and Telecommunications Administrations Site: https://cept.org/ecc/topics/maritime/personal-locator-beacons-plbs-usage-in-cept


RESCUE

 \mathbf{O}


THESSALONKI - GREECE

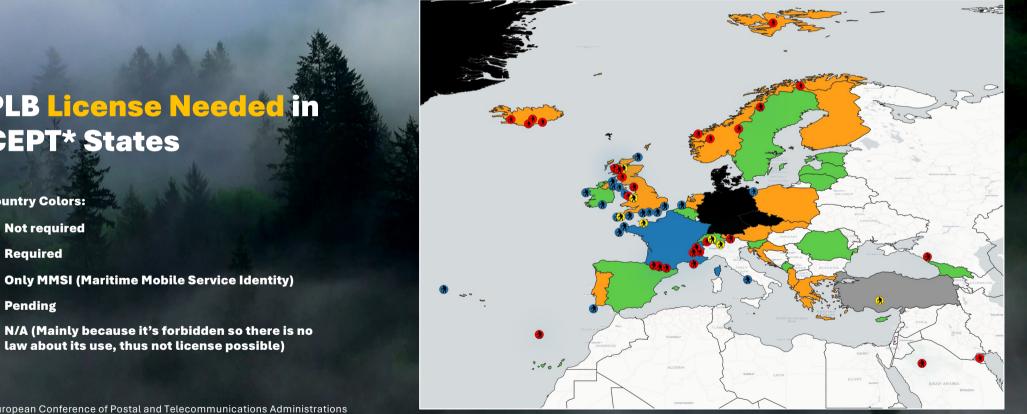
PLB Authorized Context of Use in CEPT* States

Country Colors:

*European Conference of Postal and Telecommunications Administrations

Source: European Conference of Postal and Telecommunications Administrations Site: https://cept.org/ecc/topics/maritime/personal-locator-beacons-plbs-usage-in-cept

RESCUE


THESSALONIKI - GREECE

+

PLB License Needed in CEPT* States

Only MMSI (Maritime Mobile Service Identity)

law about its use, thus not license possible)

PLB-Aeronautical Use

PLB-Land Use

*European Conference of Postal and Telecommunications Administrations

Source: European Conference of Postal and Telecommunications Administrations Site: https://cept.org/ecc/topics/maritime/personal-locator-beacons-plbs-usage-in-cept

ij

PLB-Maritime Use

RESCUE INTERNATIONA 0

+ 2024

Country Colors:

Required

Pending

Not required

BEACON POPULATION

2022

39%

14%

47%

ELT EPIRB PLB

 We observed a constant growth of beacon population (expected)

 In 8 years, an average of 0,42% PLBs were activated, and 0,041% were actual SAR events (Globally)

 Registration average for all beacons is 73,43%

 In 8 yrs of the PLB that generated an alert call, an average of 73,4% (per year) were registered

PLBs are 16% of all confirmed alerts

In 2022 39% of all SAR cases were Land SAR events

Source: SARSAT-COSPAS "Report on System Status and Operations No.39

RESCUE

 \mathbf{O}

BEACON POPULATION

14%

39%

47%

ELT EPIRB PLB

In 2022 there was an estimated of 3.100.908 beacons

Of all, 1.225.032 were PLBs

2020 16%

45%

2021

39%

39%

40%

15%

46%

RESCUE

 \mathbf{O}

2019

45%

Source: SARSAT-COSPAS "Report on System Status and Operations No.39

BEACON (Est)POPULATION

2022

459.725 1.225.032 15% 39%

> **1.416.151 46%**

ELT EPIRB PLB

BEACON REGISTRATION

PLBs 2022

25%

75%

Unregistered Registered

 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022

 406-MHz Registered Beacon vs. Beacon Population

Source: SARSAT-COSPAS "Report on System Status and Operations No.39"

BEACON POPULATION

WHEN THE C/S SYSTEM DETECTS A BEACON EMITING A DISTRESS SIGNAL

IT DOES NOT INCLUDE THE FALSE POSITIVE ALERTS WHICH CONSTITUTE (est.) 95% OF THE SIGNALS WHICH IS FILTRATED BY THE SYSTEM

SAR EVENT

RESCUE

0

THE ACTIVATION IS CONFIRMED AS AN EMERGENCY SITUATION AN REQUIRES A SAR RESPONSE

DATA IS AS REPORTED BY ADMINISTRATOR

BEACON ALERTS

Percentage of SAR Events in relation to all PLBs (Globally) in 2022 was 0,0362%

For SAR Responders **YELLOW** trend

SAR Administrators RED trend

False Alerts not included – S/C system filters all signals of which ~95% are false alerts

> Data source: SARSAT-COSPAS "Report on System Status and Operations No.39 Analysis: Rescue International

BEACON ALERTS

PLB Alerts-2022

1.537 28%

> **3**.934 72%

Registered Unregistered

BEACON PERSONS RESCUED

Avg. 1,5 persons rescued per event (LAND)

BEACON INDICATORS

All beacons-all events:

Avg. in 7 years (excl.2021) is one SAR Incident every 2.500 beacons

No data available for 2021

Source: SARSAT-COSPAS "Report on System Status and Operations No.39

BEACON INDICATORS

1:2.479

All PLBs and all Land SAR events:

Avg. in 6 years (excl.2019 and 2021) is one SAR Incident every 2.479 beacons

Lower is bad, higher is good!

No data available for 2019 and 2021

Source: SARSAT-COSPAS "Report on System Status and Operations No.39

SAR EVENTS 2022

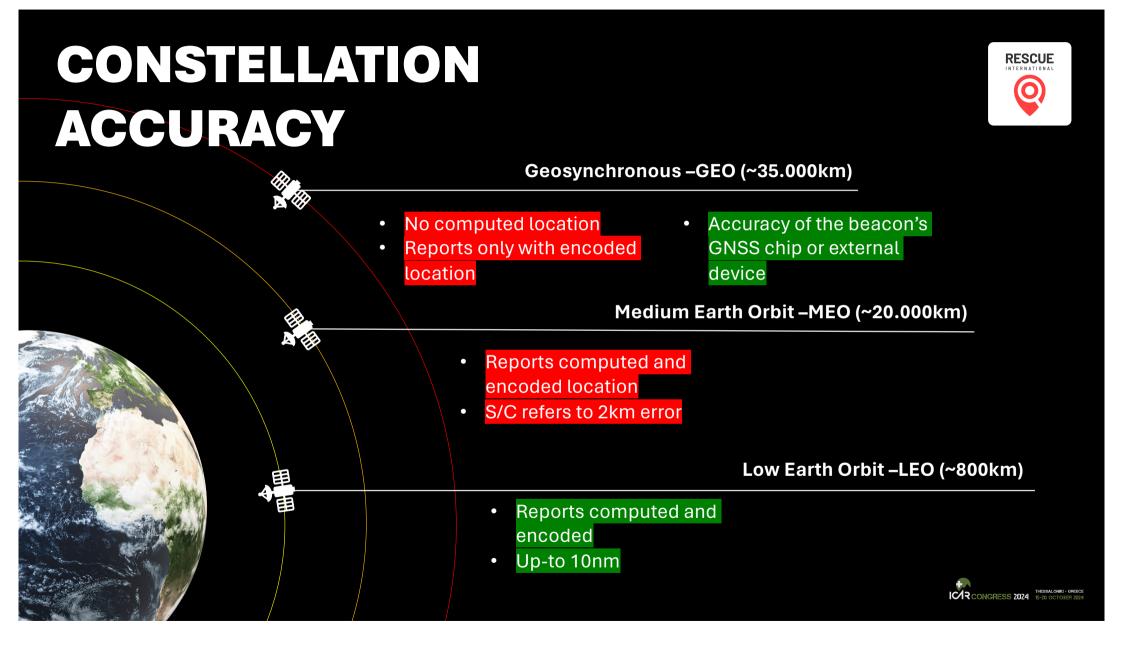
PLBs ONLY 2022

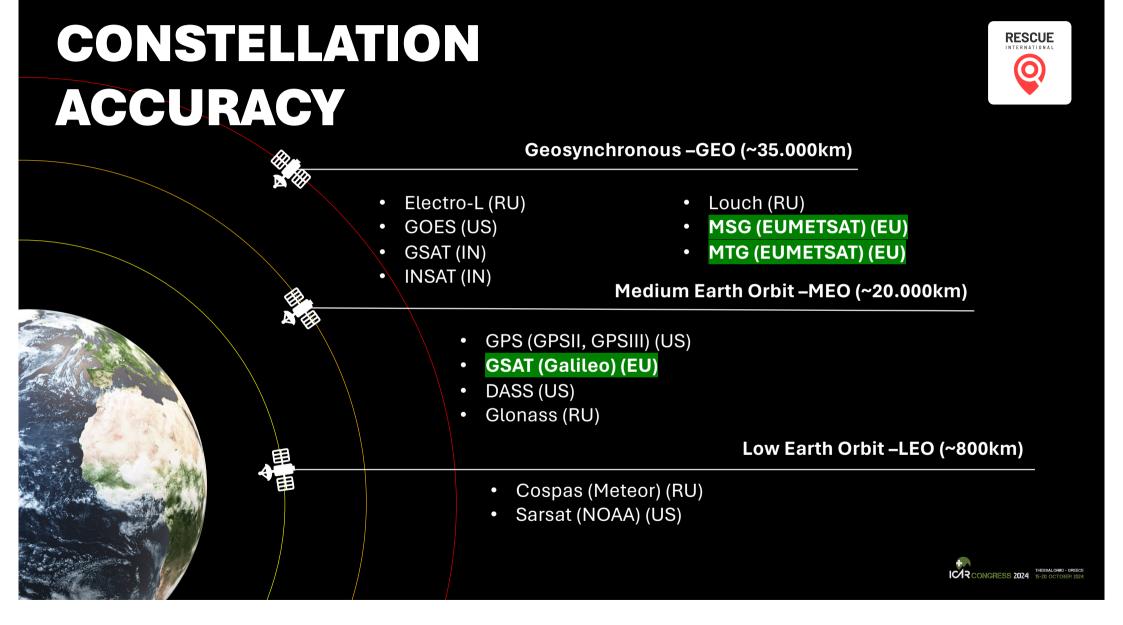
THESSALONKI - GREECE 15-20 OCTOJER 2024

SAR EVENTS 2022

THESSALONIKI - GREEC

CONSTELLATION PROPERTIES




	Geosynchronous –GEO (~35.000km)										
signals	tronger signal locatio • More c ompute • Less Ll	overage									
	Medium Eart	h Orbit –MEO (~20.000km)									
•	Higher accuracy	 More coverage Less LUTs 									
		Low Earth Orbit –LEO (~800km)									
	 Better for weaker signals Lower accuracy Wait times significant 	More LUTs									
		THESSALONICI- OFFICE THESSALONICI- OFFICE THESSALONICI- OFFICE									

CONSTELLATION PROPERTIES

			9		-			Table 7. M	FOSARC	nound Sogr	Geosvice ment Status (MEOLUTs) (31 Decem	rono	le –G		5101010	km)	CEOL	(T-) (21 D
Code	Location	OSAR Ground	Segmen	Associated	Dual	Ts) (31 December 2023) Comments	Code	Location	Provider	Channels	Comments	Additional Capabilities (b)	Code	Location	Provider	Status	Associated GEOSAR	UTs) (31 December 2023)
2241	Maspalomas	Spain	FOC	MCC SPMCC	No		6054	Algiers	Algeria	4		cupinoines (c)						Comments
2271-2	Toulouse	France	FOC	FMCC	Yes		5035	Mingenew	Australia	6	Networked with NZ MEOLUT 5125	1, 2, 4, 5, 7, 8	2242 2243	Maspalomas	Spain	FOC	GOES-East MTG-I1	
2324	Lee-on-Solent	UK	FOC	UKMCC	No		4123	Beijing	China (P.R. of)	6		7f	2243	Maspalomas Toulouse	Spain France	FOC	MIG-II MIG-II	
2401	Penteli	Greece	FOC	GRMCC	No		2091	Lamaca / EU	(P.R. of) Cyprus	4	Part of European 12-channel MEOLUT. MEOSAR	4, 5£, 7£	2323	Lee-on-Solent	UK	FOC	MSG-4	
2471	Bari	Italy	FOC	ITMCC	No						IOC/FOC standard. Phased-array L-band antenna, MEOSAR IOC/FOC		2402	Penteli	Greece	FOC	MSG-3	
2573	Spitsbergen	Norway	FOC	NMCC	No		2275	Toulouse Saint-Denis-La	France	20	standard. Phased-Array L-Band antenna. Connected to the FR	4, 5f, 7f	2472	Bari	Italy	FOC	MSG-3	
711-2	Ankara	Türkiye	FOC	TRMCC	Yes		6601	Réunion / EU	France	30	MEOLUT network.)	4, 5f, 7f	2713	Ankara	Turkey	FOC	MSG-4	
2733	Nakhodka	Russia	FOC	CMC	No		2405	Keratea	Greece	6		5f	2735	Moscow	Russia	FOC	Electro-L No.3	
37-8	Alaska	USA	FOC	USMCC	Yes	Combined LEO-MEO antenna.	4163	Dapingding	ITDC	8		7f	2736	Moscow	Russia	FOC	Electro-L No.2	
3161 3162	Goose Bay Churchill	Canada	FOC	CMCC	No		4314	Futtsu	Japan		a of h UMCC etwor 1 with UMFOLUT		2738	Khabarovsk	Russia	00	Jouc 5 /Electro-I No	
162	Edmonton	Goada	FOC	CMC	No		5125	Taupo		6	E. ed h. IUMCC letwor I WILL O'MEOLUT 50 Paul FE. ipean 12 janne IEOL I MEO FOR initial	1, 2, 4, 5, 7, 8	3166	Edmonton	Canada		G ES-Vest	S
		Cnada		CMC	110	For the ing and back-up, used operationally as	2574	Spitsbergen / EU	Norw	4	Part I Expean 1.2 hanney IEOLU. MEC	4, 5f, 7f	3167	Ottawa	Canada	FO	West West	A / back-up facility.
3168	Ottawa (LOW)		D		No	needed.	4034	Jeddah	Saudi	6			3169	Ottawa	Canada	FOC	GOES-East or GOES-West	
81-2	Guam	USA	IOC	USMCC	Yes	Combined LEO-MEO antenna.	5635	Changi	Singapore	6	One additional LEO/MEO channel with Changi	7f	3674	Maryland	USA	FOC	GOES-East	-
87-8	Hawaii	USA	FOC	USMCC	Yes	Combined LEO-MEO antenna.		Maspalomas		-	LEOLUT (5632). Part of European 12-channel MEOLUT. MEOSAR		3675	Maryland GSE	USA	FOC	GOES-East or GOES-West	Test facility used operationally as needed
67-8	Florida Maryland	USA	FOC	USMCC	Yes	Combined LEO-MEO antenna.	2244	/ EU	Spain	4	IOC/FOC standard.	4, 5f, 7f	3676	Maryland	USA	FOC	GOES-West	
678	(LME)	USA	FOC	USMCC	No	LEO-MEO support Equipment. Combined	2714 4706	Ankara Abu Dhabi	Türkiye UAE	6			4194	Bangalore	India	FOC	INSAT-3D	
31-2	Jeddah	Saudi Arabia	FOC	SAMCC	Yes		4706	Abu Dhabi Lee-On-Solent	UAE	6	One combined MEO/LEO antenna. Two additional	I I I I I I I I I I I I I I I I I I I	4194bis 4662	Bangalore Doha	India Qatar	FOC	INSAT-3DR MSG-3	
21-2	Beijing	China (P.R. of)	FOC	CNMCC	Yes		2325	Lee-On-Solent	UK	/	antennas installed at Kinloss (UK) for D&E if needed. 6 MEO, and 6 LEO/MEO channels	↓ ↓┃	4662	Abu Dhabi	UAE	FOC	MSG-3 MSG-3	
64-5	Dapingding	ITDC	IOC	TAMCC	Yes		3385	Hawaii	USA	12	- 2 in HI,	4, 5, 7, 8	4702	Abu Dhabi	UAE	FOC	MSG-2	
191	Bangalore	India	FOC	INMCC	No		0000		Care		- 2 in AK - 2 in GU	., ., /, *	5123	Goudies Road	New Zealand	FOC	GOES-West	1
92	Lucknow	India	FOC	INMCC	No		3669	Florida	USA	9	MEOSAR IOC/FOC standard.	4, 5, 7, 8	5124	Goudies Road	New Zealand	FOC	Louch-5A	Active-tracking capable antenna.
311	Futtsu	Japan	FOC	JAMCC	No		3683	NSOF	USA	8	MEOSAR IOC/FOC standard. Backup of 3669.	4, 5, 7, 8	6053	Algiers	Algeria	FOC	MSG-4	
403 531	Incheon Karachi	Korea (Rep. of) Pakistan	FOC	KOMCC PAMCC	No					Min	utos to pro	0000	7011	El Palomar	Argentina	FOC	GOES-East	
661	Doha	Oatar	FOC	OAMCC	No						utes to pro	6655	7104	Brasilia	Brazil	FOC	GOES-East	
701	Abu Dhabi	UAE	FOC	AEMCC	No								7105	Recife	Brazil	FOC	MSG-3	
71-2	Hong Kong	Hong Kong China	FOC	HKMCC	Yes					<u>(aln</u>	nost real-rii	ne) —	7253	Santiago	Chile	FOC	GOES-East	
254	Jakarta	Indonesia	FOC	IDMCC	No					Tati			7602	Callao	Peru	FOC	GOES-West	1
31-2	Kuntan	Malaysia	UD	MYMCC*	Yes	Pending MCC commissioning.												
632	Singapore	Singapore	FOC	SIMCC	No													
71-2	Bangkok	Thailand	FOC	THMCC	Yes										v Ear	in O	rbit –LEO	(~800km)
741 011	Haiphong Cape Town	Viet Nam South Africa	FOC	VNMCC ASMCC	No													
051	Ouargla	Algeria	FOC	ALMCC	No													
052	Algiers	Algeria	FOC	ALMCC	No													
571	Abuja	Nigeria	CNO	NIMCC	No	MCC configured as a SPOC of the Spanish				•	Better for w		oigno			•		rada
012	Rio Grande	Argentina	FOC	ARMCC	No	MUC.					Deller for w	теакег	Signa	15			Less cove	erage
014	El Palomar	Argentina	FOC	ARMCC	No													
101	Brasilia	Brazil	FOC	BRMCC	No					•	Lower accu	Iracy				•	More LUT	0
102	Recife	Brazil	FOC	BRMCC	No							nacy						
251	Santiago	Chile	FOC	CHMCC	No													
252	Punta Arenas	Chile	FOC	CHMCC	No	X				•	Wait times	signifi	cant					
254	Easter Island	Chile	FOC	CHMCC	No						val unos	JIBIIII	ount					
601	Callao	Peru	FOC	PEMCC	No													
1																		THESSAL CONGRESS 2024 15-20 OF

ORBITAL ALTITUDES

,0 km / mi – Sea level 37.6 km / 23.4 mi – Self-propelled jet aircraft flight ceiling (Record set in 1977) 215 km / 133.6 mi – Sputnik-1, the first artificial satellite of Earth 340 km / 211.3 mi - International Space Station 390 km / 242.3 mi - Former Russian space station Mir 595 km / 369.7 mi – Hubble Space Telescope

[700–1700 km] – Polar-orbiting satellites [435–1056 mi]

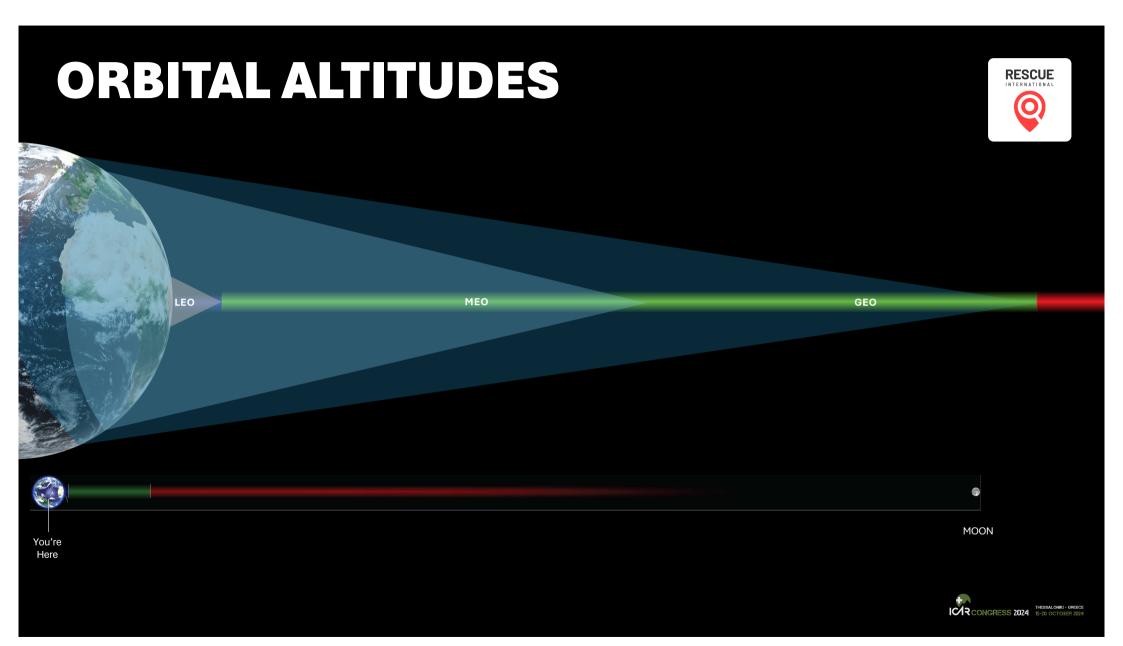
20 350 km GPS (Global Positioning System) satellites These satellites are on a semi-synchronous orbit (SSO), meaning that they orbit the Earth in exactly 12 hours (twice per day).

35 786 km

35786 km Geosynchronous (GEO) and geostationary (GSO) satellites. Geosynchronous satellites orbit the Earth at the same rate that the Earth rotates. Thus they remain stationary over a single line of longitude. A geostationary satellite remains in a fixed location as observed from the surface of the Earth, allowing a satellite dish to be alligned to it. This particular attitude marks the border between the MEO and HEO zones.

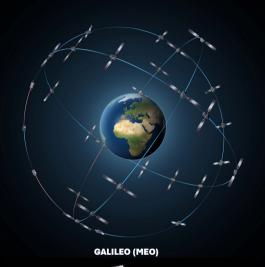
HEO zone (High Earth orbit)

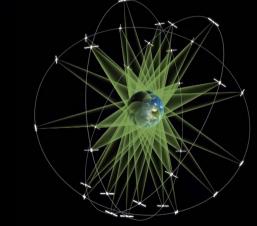
LEO zone (Low Earth MEO zone (Medium Earth orbit) orbit)

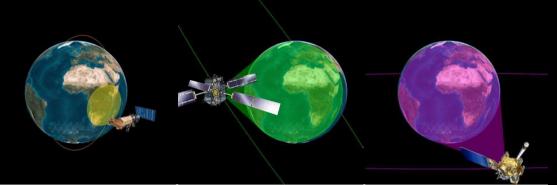

2000 km / 1243.7 mi

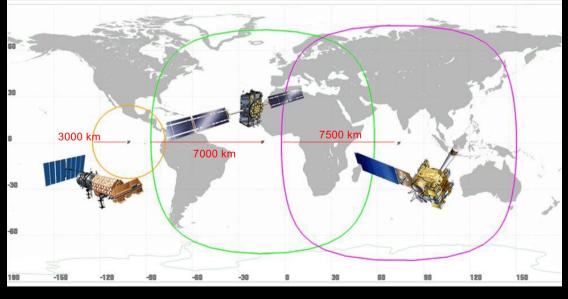
600-800 km / 372.8-497.1 mi - Sun-synchronous satellites Nou-book km / 3/2.6-49/.1 km - Sun-synchronous satellities These satellities onlit the Earth in nearly exact polar orbits north to south. They cross the equator multiple times per day, and each time they are at the same angle with respect to the Sun. Satellities on these types of orbits are particularly useful for capturing images of the Earth's surface or images of the Sun.

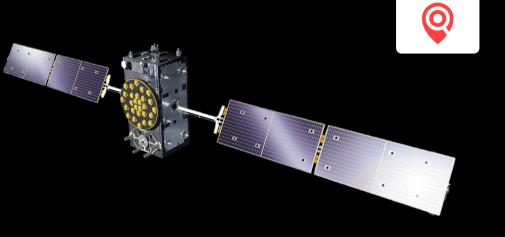
Scale: 2000 km / 1243.7 mi




THESSALONKI - CREECE 15-20 OCTOBER 2024


ORBITAL ALTITUDES





THESSAL ONIKI - GREECE 15-20 OCTO3EP: 2024

RESCUE

SARSAT-COSPAS

- First established in 1979 by Canada,
 France, the USA, and the former Soviet
 Union
- MEOSAR upgrade to current infrastructure complement the LEO and GEO satellites

PARTMENT OF

NHAL SATELLI

THESSALONIKI - GREECE 15-20 OCTOBER 2024

SARSAT-COSPAS

- First established in 1979 by Canada, France, the USA, and the former Soviet Union
- MEOSAR upgrade to current infrastructure complement the LEO and GEO satellites

GALILEO

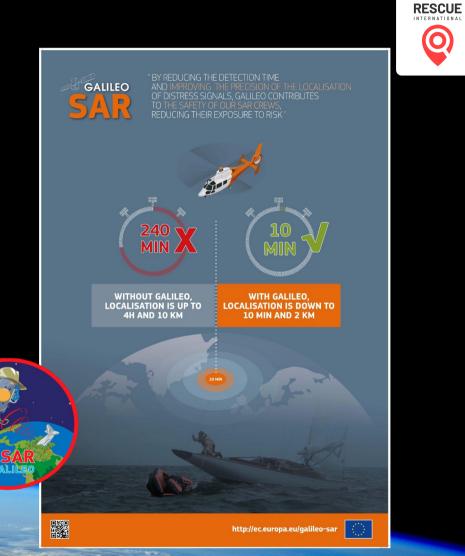
- Operational since 2016
- Under civilian control
- Integrated in COSPAS-SARSAT
- Constellation of 24 + 6 satellites at 23,200 kms (MEO)
- 3 orbital plans

RESCUE

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

Enables nearly real-time detection and localization of distress signals


Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

Features the unique Return Link Service-RLS

In real cases distress are computed under 10 minutes

On 8th October 2021, in Svalbard at 78° Latitude the position was confirmed after 1m 20s after activation with an initial accuracy of 730m

On 26 September 2019, in Belgium the position was calculated in 3m 32s after activation with an initial accuracy of 100m

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

Features the unique Return Link Service-RLS

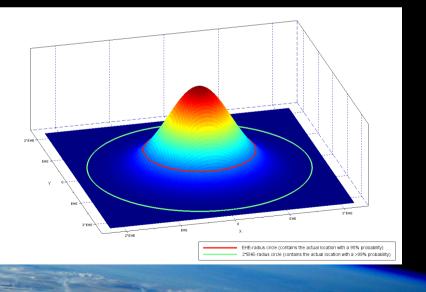
Minimum Probability Requirements

Location probability after:1 burst>90%12 bursts>98%1 burst within 5k>90%12 bursts within 5k>95%12 bursts within 2k>90%

This is according to the Galileo Service Definition Document (SDD) Performance in real life is above these specifications!

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone


Features the unique Return Link Service-RLS

RESCUE TERNATION \mathbf{O}

Performance Reported in 2024

Average location probability with reference beacons: 1 burst +99,9% 12 bursts 100% 1 burst within 5k **12 bursts within 5k**

98,9%-99,9% 99,9%-100%

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

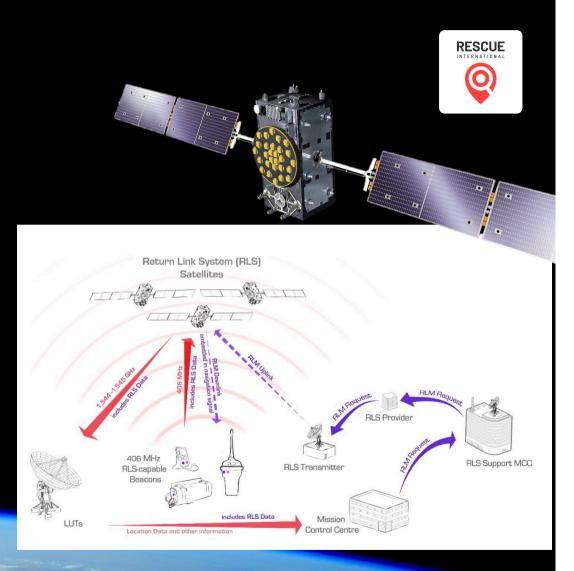
Features the unique Return Link Service-RLS

The Beacon will receive confirmation (RLM) from the MCC that his message have been read and help is underway

RESCUE

0

This helps morale and improve the chances for staying put (in LandSAR) and with the beacon


Delivery latency within 15m is avg. 99,73% Average delivery time in real cases it's 37 seconds according to EUSPA

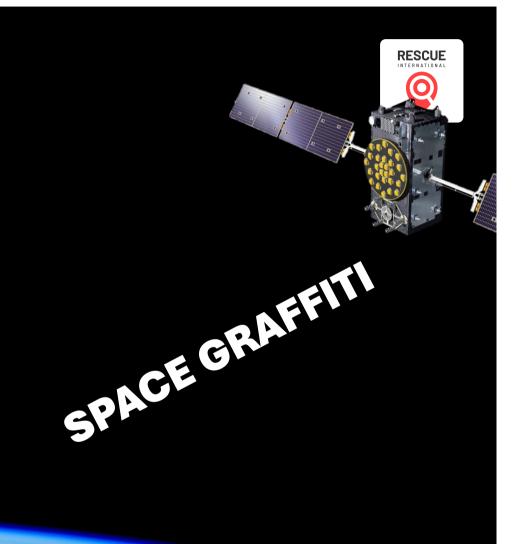
Operational (FOC) since 26 March 2021

Galileo is the only RLSP

Enables nearly real-time detection and localization of distress signals

Unprecedented speed and accuracy, meaning a reduced alert time and a smaller search zone

GALILEO OTHER FACTS


All this time you have been navigating with Galileo

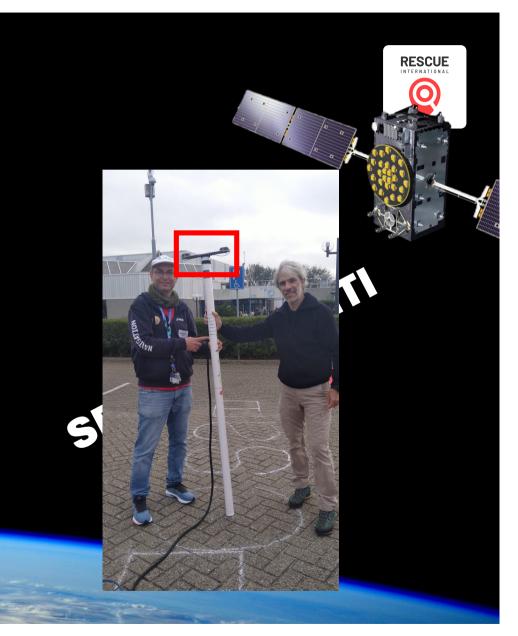
Galileo has brought increased accuracy since entering service in 2016

With the **High Accuracy Service (HAS)** you can reach up-to 20cm accuracy

Galileo is upgradeable by design reducing the need for additional (expensive) space missions

Expansion to LEO in sight for future Telecom capabilities and many other applications

GALILEO OTHER FACTS


All this time you have been navigating with Galileo

Galileo has brought increased accuracy since entering service in 2016

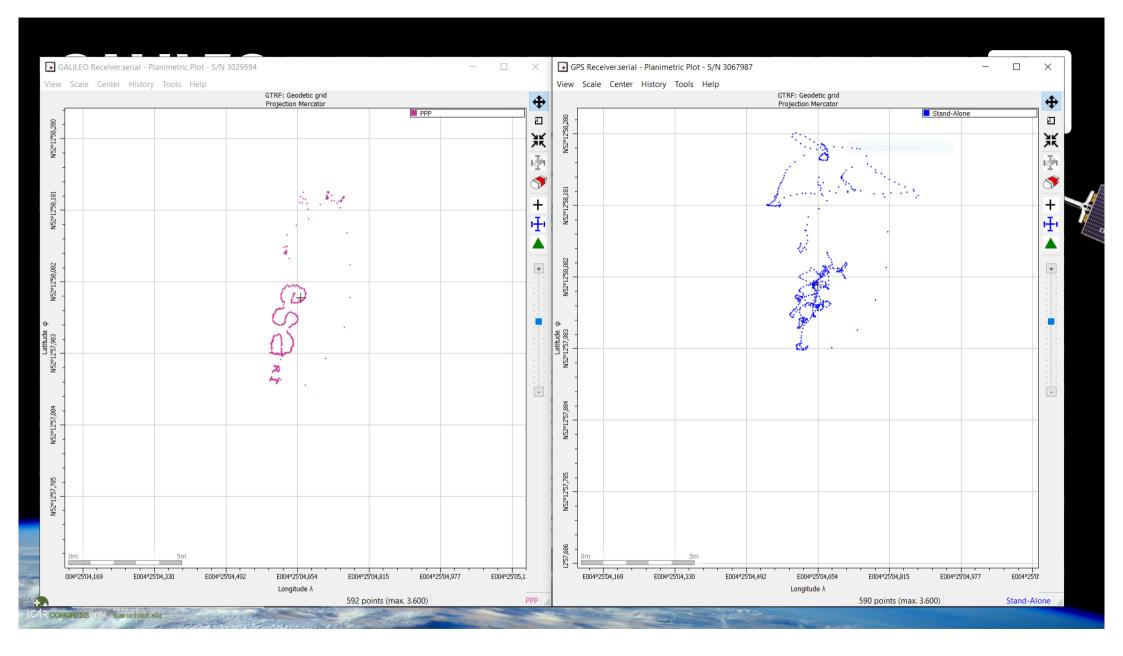
With the **High Accuracy Service (HAS)** you can reach up-to 20cm accuracy

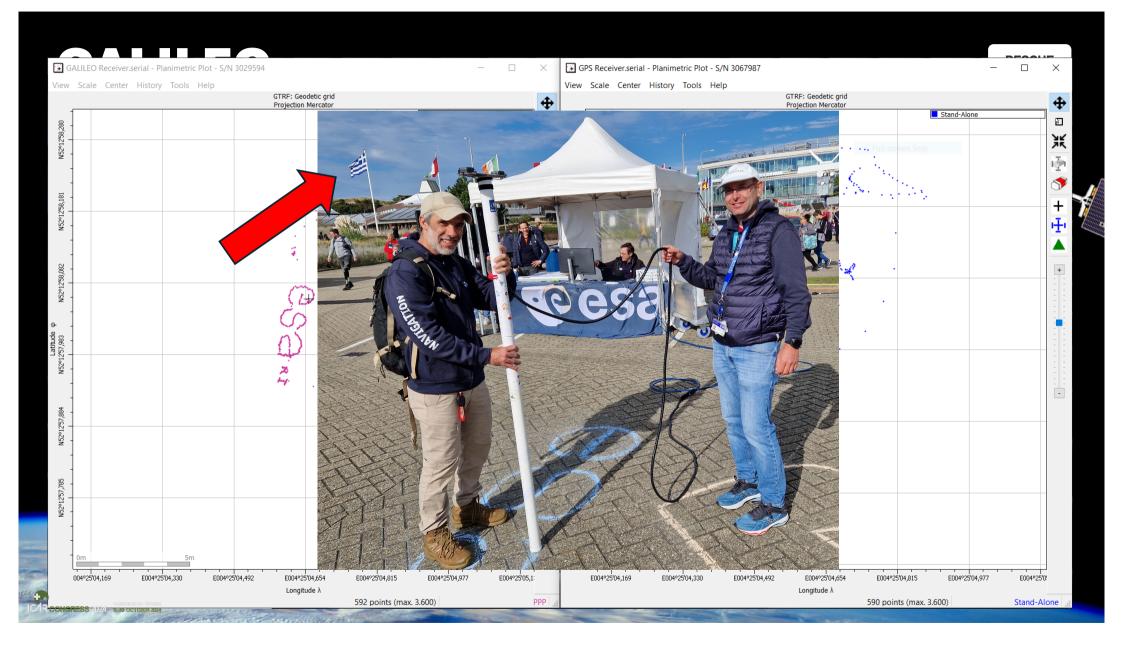
Galileo is upgradeable by design reducing the need for additional (expensive) space missions

Expansion to LEO in sight for future Telecom capabilities and many other applications

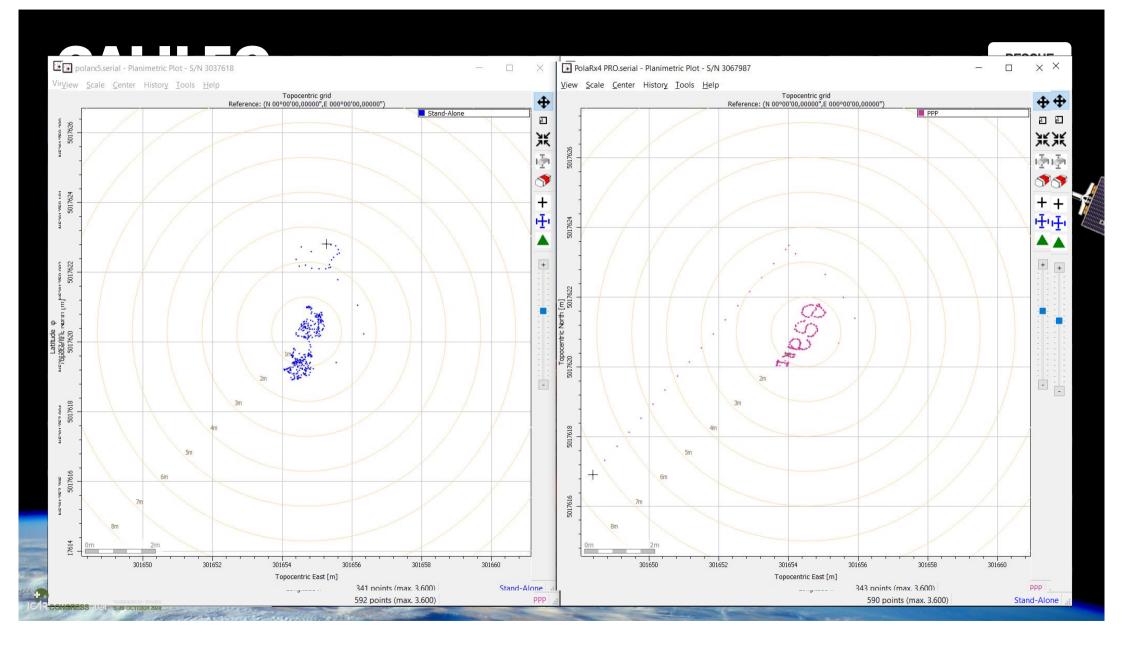
GALILEO OTHER FACTS

All this time you have been navigating with Galileo


Galileo has brought increased accuracy since entering service in 2016


With the **High Accuracy Service (HAS)** you can reach up-to 20cm accuracy

Galileo is upgradeable by design reducing the need for additional (expensive) space missions


Expansion to LEO in sight for future Telecom capabilities and many other applications

	📅 polarx5.serial - RxControl - S/N 3037618	- 🗆 🗙	* PolaRx4 PRO.serial - RxControl - S/N 3067987 - X	
	<u>File View Communication Navigation Calibration L-Ba</u>	and <u>T</u> ools <u>L</u> ogging <u>H</u> elp	<u>File View Communication Navigation Calibration L-Band Tools Logging H</u> elp	
	📶 🖽 🖿 🕀 🖸 🍉 🧍 🕶 🔰 🔻	📃 🍳 🔛 🔇 📰	📊 🌐 🖿 🐨 🗲 🥂 🖤 📜 🖉 🖾 🔍 📰	
	Position Information		Position Information	
100	Position Velocity		Position Velocity	
	Cartesian χ: +3.904.354,999m σ _{χ:}	+1,328m	Cartesian X: +3.904.358,776m σ _X : +7,794m	
	GTRF Y: +301.654,240m _{GY} :	+0,800m	GTRF Y: +301.655,762m	
	Z: +5.017.623,653m σ _Z :	+2,162m	Z: +5.017.623,450m σ _Z : +71,917m	
	▼ Satellite Status			
	GP5 GLONASS Galileo BeiDou SBAS QZ53	5 NavIC L-Band	▼ Satellite Status	
		o Navic L'Bano	GPS GLONASS Galileo BeiDou SBAS QZSS NavIC L-Band	
		09 E10 E11 E12	E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 E12	
	E13 E14 E15 E16 E17 E18 E19 E20 E	21 E22 E23 E24	E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24	
		33 E34 E35 E36	E25 E26 E27 E28 E29 E30 E31 E32 E33 E34 E35 E36	
		G OR DE OC OS	Search: 8 0G 0R 8E 0C 05 Track: 8 0G 0R 8E 0C 05	
	Sync: 0 0G 0R 0E 0C 05 PVT: 12 120	G OR DE DC DS	Sync: 0 0G 0R 0E 0C 05 PVT: 8 0G 0R 8E 0C 05	
	Receiver Status		Receiver Status	
	Time RxClock DOP PL RAIM	PVT Status	Time RxClock DOP PL RAIM PVT Status	
	GNSS time frame HERL fd: 11,87m Sun 6-Oct-2024 VEPL 64, 10,79m	Mode: Standalone	GNS5 time frame HERL fd: 278,75m Mode: Standalone	
	Sun 6-Oct-2024 VERL fd: 10,79m 13:10:17,000 Integrity: Success	System: GPS Info: None	Sun 6-Oct-2024 VERL fd: 384,27m System: Galileo 13:10:17,000 Table data Support Table data Nono	
	+18s offset to UTC	Corr Age: N/A	+18s offset to UTC Corr Age: N/A	
_	SBF O Status DiffCorr ExEvent ExSensor	😫 🌛 🕀 😂	🐵 SBF 🥹 Status 🐵 DiffCorr 🔮 ExEvent 🕘 ExSensor 🔡 🍰 🕀 🚍	
		SSRC15 - FOC_TURN - FOC_TURN	SSRC15 - FOC_TURN - FOC_TURN	

FUTURE OF GALILEO RLS APPLICATIONS

SAR Remote Beacon Activation - RBA

For airspace users in specific confirmed distress situations when aircraft are no longer tracked by Air Traffic Service Units (ATSUs) and no contact can be established.

Distress Position Sharing

Enables RCCs to share the position of a Beacon User in distress with other nearby beacons

IN PROGRESS

Two Way Communication -TWC

Enables communication between distress beacons and the RCC in charge, through predefined questions and answers. Aims at helping rescue teams deploying adequate resources, improving SAR operations.

Emergency Warning Satellite Service -EWSS

Galileo satellites will be disseminating alert messages directly to smartphones and navigation devices in areas threatened by a looming natural or manmade disaster

Source: EUSPA / Telespazio

https://www.euspa.europa.eu/newsroom-events/news/galileo-emergency-warning-satellite-service-ewss https://defence-industry-space.ec.europa.eu/galileo-emergency-warning-satellite-service-underway-2024-01-24_en https://www.telespazio.fr/en/press-release-detail/-/detail/serenity-project-april21

Messages come in SIT 185 format

Every beacon has a Unique Identification Number –UIN, also known as the Hex ID

Already indicates homing options

Key information and accuracy aspects for POA may be easily missed for untrained eye

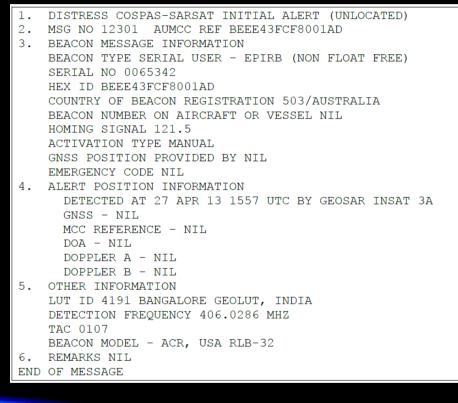
Message wording may refer to very specific technical and accuracy parameters

PARAGRAPH#	TITLE	
1	MESSAGE TYPE	М
2.	CURRENT MESSAGE NUMBER	M
2.	MCC BEACON REFERENCE	M
2		
3.	BEACON MESSAGE INFORMATION	M
	TYPE OF BEACON	0
	IDENTIFICATION	0
	BEACON HEX ID	М
	COUNTRY OF BEACON REGISTRATION	0
	BEACON NUMBER	0
	HOMING SIGNAL	0
	ACTIVATION TYPE	0
	SOURCE OF GNSS POSITION DATA	0
	EMERGENCY CODE	0
4.	ALERT POSITION INFORMATION	Μ
	DETECTION TIME & SPACECRAFT	Μ
	GNSS POSITION, TIME OF UPDATE AND ALTITUDE	0
	MCC REFERENCE POSITION	0
	DOA POSITION AND ALTITUDE	0
	A POSITION & PROBABILITY	0
	B POSITION & PROBABILITY	0
5.	OTHER INFORMATION	М
	DETECTION FREQUENCY	М
	OTHER ENCODED INFORMATION	0
6.	REMARKS	M
END OF MESSAGE		M

080401Z JAN 2017
FROM AUMCC
TO RCC WELLINGTON
BT
1. DISTRESS COSPAS-SARSAT INITIAL LOCATED ALERT
2. MSG NO 12590 AUMCC REF C00F429578002C1
3. BEACON MESSAGE INFORMATION
BEACON TYPE SERIAL USER - PLB
SERIAL NO 0042334
HEX ID C00F429578002C1
COUNTRY OF BEACON REGISTRATION 512/NEWZEALAND
BEACON NUMBER ON AIRCRAFT OR VESSEL NIL
HOMING SIGNAL 121.5
ACTIVATION TYPE MANUAL
GNSS POSITION PROVIDED BY NIL
EMERGENCY CODE NIL
4. ALERT POSITION INFORMATION
DETECTED AT 08 JAN 17 0354 UTC BY SARSAT 10
GNSS - NIL
MCC REFERENCE - NIL
DOA - NIL
DOPPLER A - 41 14 S 172 31 E PROB 79 PERCENT
DOPPLER B - 48 20 S 135 51 E PROB 21 PERCENT
5. OTHER INFORMATION
DETECTION FREQUENCY 406.0282 MHZ
TAC NO 0176
BEACON MODEL - STANDARD COMMS, AUSTRALIA MT410, MT410G
6. REMARKS NIL
END OF MESSAGE

PARAGRAPH#	TITLE	
1.	MESSAGE TYPE	Μ
2.	CURRENT MESSAGE NUMBER	Μ
	MCC BEACON REFERENCE	Μ
3.	BEACON MESSAGE INFORMATION	Μ
	TYPE OF BEACON	0
	IDENTIFICATION	0
	BEACON HEX ID	Μ
	COUNTRY OF BEACON REGISTRATION	0
	BEACON NUMBER	0
	HOMING SIGNAL	0
	ACTIVATION TYPE	0
	SOURCE OF GNSS POSITION DATA	0
	EMERGENCY CODE	0
4.	ALERT POSITION INFORMATION	Μ
	DETECTION TIME & SPACECRAFT	Μ
	GNSS POSITION, TIME OF UPDATE AND ALTITUDE	0
	MCC REFERENCE POSITION	0
	DOA POSITION AND ALTITUDE	0
	A POSITION & PROBABILITY	0
	B POSITION & PROBABILITY	0
5.	OTHER INFORMATION	Μ
	DETECTION FREQUENCY	Μ
	OTHER ENCODED INFORMATION	0
6.	REMARKS	Μ
END OF MESSAGE		М

Sample Distress Message


5-20 OCTOBER 2024

Data Fields

DISTRESS COSPAS-SARSAT INITIAL LOCATED ALERT 1. 2. MSG NO 12307 AUMCC REF BEEE43FCF8001AD 3. BEACON MESSAGE INFORMATION BEACON TYPE SERIAL USER LOCATION - EPIRB (NON FLOAT FREE) SERIAL NO 0065342 HEX ID BEEE43FCF8001AD COUNTRY OF BEACON REGISTRATION 503/AUSTRALIA BEACON NUMBER ON AIRCRAFT OR VESSEL NIL HOMING SIGNAL 121.5 ACTIVATION TYPE MANUAL GNSS POSITION PROVIDED BY NIL EMERGENCY CODE NIL 4. ALERT POSITION INFORMATION DETECTED AT 27 APR 13 1653 UTC BY LEOSAR SARSAT 12 GNSS - NIL MCC REFERENCE - NIL DOA - NTL DOPPLER A - 43 04.04 S 147 15.75 E PROB 83 PERCENT DOPPLER B - 51 45.19 S 167 48.58 W PROB 17 PERCENT OTHER INFORMATION THE B POSITION IS LIKELY TO BE AN IMAGE POSITION DETECTION FREQUENCY 406.0277 MHZ TAC 0107 BEACON MODEL - ACR, USA RLB-32 LUT TD 6011 6. REMARKS NIL END OF MESSAGE

Sample Initial Location

Sample GEOSAR Unlocated

Alert

- DISTRESS COSPAS-SARSAT POSITION UPDATE ALERT
 MSG NO 00191 AUMCC REF BEEE4634B00028D
 BEACON MESSAGE INFORMATION BEACON TYPE SERIAL USER - EPIRB (NON FLOAT-FREE) SERIAL NO 101676 HEX ID BEEE4634B00028D COUNTRY OF BEACON REGISTRATION 503/AUSTRALIA HOMING SIGNAL 121.5 ACTIVATION TYPE MANUAL
 ALERT POSITION INFORMATION
- DETECTED AT 15 MAR 16 1248 UTC BY MEOSAR ALERT LAST DETECTED AT 15 MAR 16 1248 UTC MCC REFERENCE - 17 47.5 S 146 06.2 E DOA - 17 47.6 S 146 07.4 E ESTIMATED ERROR 005 NMS
- 5. OTHER INFORMATION DETECTION FREQUENCY 406.0280 MHZ6. REMARKS NIL
- END OF MESSAGE

Position Confirmed Alert

1.	DISTRESS COSPAS-SARSAT POSITION UPDATE ALERT
2.	MSG NO 00194 AUMCC REF BEEE4634B00028D
З.	BEACON MESSAGE INFORMATION
	BEACON TYPE SERIAL USER - EPIRB (NON FLOAT-FREE)
	SERIAL NO 101676
	HEX ID BEEE4634B00028D
	COUNTRY OF BEACON REGISTRATION 503/AUSTRALIA
	HOMING SIGNAL 121.5
	ACTIVATION TYPE MANUAL
4.	ALERT POSITION INFORMATION
	detected at 15 mar 16 1301 utc by meosar
	ALERT LAST DETECTED AT 15 MAR 16 1301 UTC
	MCC REFERENCE - 17 47.6 S 146 05.3 E
	DOA - 17 47.9 S 146 04.5 E ESTIMATED ERROR 002 NMS
5.	OTHER INFORMATION
	DETECTION FREQUENCY 406.0280 MHZ
6.	REMARKS NIL
END	OF MESSAGE

Position Confirmed Updated Alert

RESCUE INTERNATIONA 0

/71472 00000/3660/20 100 0657 /925/5030 /3EF4957FBF81FE0

BEACON ID: 2DC4000000FFBFF

OWNER: ANONYMOUS OWNER

VESSEL NAME: SUNKEN

**** BEACON REGISTRATION DATABASE INFORMATION ****

TEL 1: HOME 0123456789 1234 LOCAL DRIVE HOME CITY CA TEL 2: WORK 1234567890 98765 USA TEL 3: EMAIL: CONTACTS: JOHN DOE JANE DOE TEL 1: HOME 0123456789 TEL 2:

TEL 1: HOME 0123456789 TEL 2: WORK 1234567890

TYPE: SAIL 1 Masts LENGTH OVERALL (FT): 36 COLOR: BLUE/WHITE CAPACITY: 8 RADIO CALL SIGN: REGISTRATION NO: CF12345P RADIO EQP: VHF INMARSAT NUMBER: CELLULAR NUMBER: 2345678901 NUMBER OF LIFE RAFTS: 0 NUMBER OF LIFE BOATS: 0 HOME PORT PRIMARY SRR: PACAREA SECONDARY SRR: HOME PORT: MARINA NAME SAN FRANCISCO CA

MODEL NUMBER: ABC-12 MANUFACTURER: XXX ACTIVATION TYPE: CAT2 (MANUAL) BEACON CONTAINS SVDR: NO DATE FIRST REGISTERED: 02 JUN 1999 DATE REG EXPIRES: 02 JUN 2001 DATE LAST UPDATED: 02 MAY 2001

REMARKS: SPECIAL STATUS: SPECIAL STATUS INFO:

SPECIAL STATUS DATE:

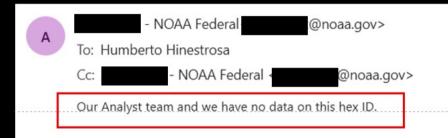
QQQQ /LASSIT /ENDMSG

> Sample Message to Report Beacon **Registration Data**

Not only location can be provided:

If beacon was registered, registration information may be available to the RCC

SAR agencies may use this information to know more about the subject and the event


-20 OCTOBER 2024

Multiple variables that are beyond our [and subject's] control may affect the reception of the beacon signal

Ionospheric disturbances Humidity Tree Canopy Position of the beacon Damage of the beacon Weather ...and more

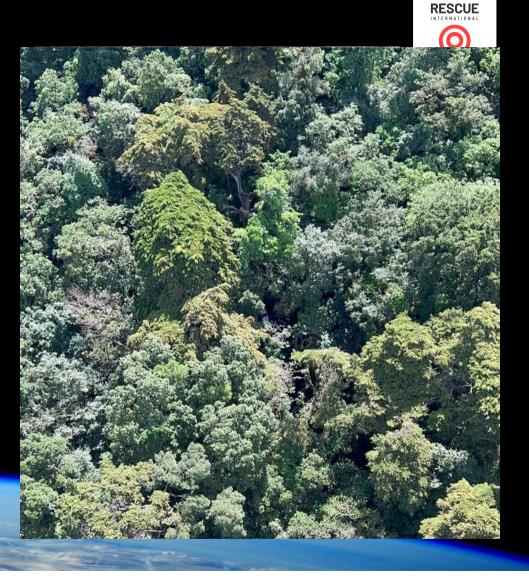
The alert system message sometimes may seem incomplete

SARSAT Program and Policy Analyst OSPO/SPSD//DSB/SARSAT

Multiple variables that are beyond our [and subject's] control may affect the reception of the beacon signal

Ionospheric disturbances Humidity Tree Canopy Position of the beacon Damage of the beacon Weather ...and more

The alert system message sometimes may seem incomplete



Multiple variables that are beyond our [and subject's] control may affect the reception of the beacon signal

Ionospheric disturbances Humidity Tree Canopy Position of the beacon Damage of the beacon Weather ...and more

The alert system message sometimes may seem incomplete

Multiple variables that are beyond our [and subject's] control may affect the reception of the beacon signal

Ionospheric disturbances Humidity Tree Canopy Position of the beacon Damage of the beacon Weather ...and more

The alert system message sometimes may seem incomplete

Mensaje SAR SIT-185	
/85452 00000/3660/24 247 1602 /185/CNAM	
, 1. DISTRESS COSPAS-SARSAT POSITION UPDATE ALERT	
2. MSG NO. 85452 USMCC REF 39367	
3. BEACON MESSAGE INFORMATION BEACON TYPE ELT SERIAL AVIATION ID SERIAL NO 5945 HEX ID A98C405CE4002F1 COUNTRY OF BEACON REGISTRATION 332/GUATEMALA	
HOMING SIGNAL 121.5 4. ALERT POSITION INFORMATION DETECTED AT 03 SEP 24 1559 UTC BY MEOSAR MEOSAR ALERT LAST DETECTED AT 03 SEP 24 1601 MCC REFERENCE - 14 34.2H 090 32.0W DOA - 14 34.4N 090 32.9W ESTIMATED ERROR UNKNOWN	
5. OTHER INFORMATION BEACON MANUFACTURER / MODEL: TAC 188 LUT: 3385/HI-MEO	
REGISTRATION AT C/S INTERNATIONAL BEACON REGISTRATION DATABASE	
AFTN: KZDCZSZA PHONE: 1 301-817-4576 WEB: WWW.406REGISTRATION.COM DETECTION FREQUENCY 406.0277 MHZ	
6. REMARKS NIL	
END OF MESSAGE QQQQ /LASSIT /ENDMSG	
Position Confirmed Alert	

RESCUE

It's up to us [when possible] to fill those gaps

It's up to us [when possible] to fill those gaps

It's up to us [when possible] to fill those gaps

OUTCOMES

- Compared to the other 406 beacons, in the near future PLBs are likely to become the leader in incident activation, and the most numerous of the 406 beacons
- It is possible to increase the value of the SIT185 messages. Many times, the distress message is not enough and requires input from SAR Managers
- SIT185 interpretation becomes a great advantage in calculating our POAs and Theoretical Search area
- Education on S/C is necessary in GroundSAR. It may be the difference for our subject, allowing SAR Managers to know what to ask

OUTCOMES

- ~75% of the beacons may provide additional context to our case
- Analysis of statistics can have significant impact in increasing knowledge in SAR: PLEASE SHARE YOUR STATISTICS!
- Close collaboration with the RCC will be necessary
- Homing [and training on how to do it] is expected to increase as 406 beacons alerts increase
- Every rescue activated by a PLB, is a multi-day search we don't have to do!

THANKS FOR YOUR ATTENTION!

ICRCONGRESS 2()24

THESSALONIKI - GREECE 15-20 OCTO3ER 2024

...and many thanks to those directly contributing to this work:

Contact:

Humberto Hinestrosa hinestrosa@rescue-international.com info@rescue-international.com www.rescue-international.com